生徒実験:単振動の周期

【1】目的

ばね振り子と単振り子の周期を表す式を実験で確かめ、これらの式からばね 定数や重力加速度の値を求める。

【2】原理

ばね振り子と単振り子の周期Tは、おもりの質量をm、ばね定数をk、糸の 長さをl、重力加速度をg、円周率を π とするときそれぞれ

《単振り子》 《ばね振り子》

 $T=2\pi\sqrt{\frac{m}{k}}$ (1) $T=2\pi \sqrt{\frac{l}{3}}$

という式で表される。これらの式の両辺をそれぞれ二乗すると、

 $T^2 = \frac{4\pi^2}{b}m \qquad \cdots (3)$ $T^2 = \frac{4\pi^2}{l}$

となる。したがって、ばね振り子ではおもりの質量加を横軸に、一方単振り子 では糸の長さlを横軸にとり、それぞれ周期Tの二乗を縦軸にとってグラフを 作れば、どちらも直線となって、式(1)(2)の関係が確かめられるはずである。 また式(3)(4)より、比例係数の部分がそれぞれ

となっていることから、それぞれのグラフから求めた傾きを a_1 、 a_2 とすると、

として、それぞればね定数k、重力加速度gを求めることができる。

[3]器具

鉄製スタンド、ばね、ばね振り子用おもり(鉄製小1個、鉛製大2個)、単振 り子(糸付き鉄球)、粘土(おもり用)、ものさし、台はかり(共用)、時計 (各個人の腕時計)、ビニールテープ

【4】作業

≪ばね振り子≫

- ①鉄製スタンドを実験台の上に置き、揺れないようないように調整し、ばねを とりつける。ネジにひっかけてぶら下げればよい。
- ②鉄製の小さいおもりを芯にしてまわりに粘土をはりつけ、おもり全体の質量 が200[g]になるようにする(台はかりで測る)。
- ③そのおもりをばねの下端につるして、静かにつりあわせ、つりあいの位置が わかるようにスタンドの支柱にビニールテープで目印をつける。
- ④おもりを下に引いてつりあいの位置より2[cm]位下げ、手を放す。

★振幅をあまり大きくしてはいけない。

⑤おもりが目印を上から下に通過する瞬間に計時を始め、その後20回目に上か ら下に通過するまで(20往復分)の時間を測定する。

★振動の回数の数え方に注意。計時を開始した瞬間は「0回」である。

- ⑥粘土と大小のおもりを組み合わせ、おもり全体の質量が400.600.800.1000[g] になるようにして、③~⑤の作業をくり返す。鉛の大きいおもり1個の質量 は約500[g]である。
- ★おもり全体の質量は決して1000[g]を越えないこと。ばねが伸びきってもと に戻らなくなる。

- ⑦おもりの質量が200[g]のときのつりあいの位置と、1000[g]のときのつりあ いの位置の間の長さ*△x*を測定しておく。
- ⑧隣の班と協力し、ばねを2個直列(縦)につないでスタンドにとりつけ、② ~⑦の作業をくり返す。
- ⑨測定結果を次ページの表にまとめる。

《単振り子》

①単振り子の糸を鉄製スタンドのクランプにはさみ、おもりの中心から支点ま での長さが20[cm]になるように糸の長さを調節する。

②おもりを2[cm]位横に引いて静かに放し、振動を開始する。

★振幅を大きくすると(2)式に従わなくなる。

③スタンドの支柱などを目印にし、おもりが最下点を右から左に通過する瞬間 に計時を始め、その後20回目に右から左へ通過する瞬間まで(20往復分)の 時間を測定する。

★振動の回数の数え方に注意。計時を開始した瞬間は「0回」である。

④おもりの中心から支点までの長さが40,60,80,100[cm]となるようにして②. ③の作業をくり返す。

⑤単振り子をスタンドからとりはずし、おもりの質量を測定する。

⑥おもりを芯にしてまわりに粘土をはりつけ、質量が約2倍になるようにする。 このおもりについて、①~④の作業をくり返す。

★おもりの重心の位置が変わらないように、粘土は上下均等にはりつけること。 ⑦測定結果を次ページの表にまとめる。

【5】考察

《ばね振り子》 ①ばね1個の場合と2個の場合について、それぞれ横軸におもりの質量m、縦 軸に測定した周期Tの二乗をとり、結果をグラフに示せ。グラフは折れ線で はなく、測定点の分布の中心付近を通る直線とする。

②グラフの傾き α_1 を $[s^2/kg]$ の単位で求め、式(5)によりばね1個と2個直列の

場合のそれぞれについて、ばね定数んの値を求めよ。

③作業のの結果から別途ばね定数 んの値を計算し、②の結果と比較せよ。この 場合の*k*はおもりの質量の差を*⊿m*、ばねの伸びの差を*⊿x*とするとき、

 Δx

で求められる。

- ④②の結果から、ばね定数をの同じばねを2本直列にした場合の合成ばね定数 k2はkを用いてどのように表されると予想されるか。
- ⑤式(1)を運動方程式から導け。(教科書p. 74~75参照)

《単振り子》

①横軸に振り子の長さ $oldsymbol{l}$ 、縦軸に測定した周期 $oldsymbol{T}$ の二乗をとり、結果をグラフ に示せ。グラフは折れ線ではなく、測定点の分布の中心を通る直線とする。

②グラフの傾き α_2 を $\lceil s^2/m \rceil$ の単位で求め、式(6)により重力加速度gの値を求 め、知られているgの値と比較せよ。

③おもりの質量を変えたとき、周期は変化したか。

④式(2)を運動方程式から導け。(教科書p. 76参照)

測定結果

≪ば ね	3振り	子》	
→ 1.F1	ነ 1 🛣	カン	3

おもりの質量[kg]	0.20	0.40	0.60	0.80	1.00
2 0 T[s]					
周期T[s]					
$T^2[s^2]$					

グラフから求めた傾き

 $[s^2/kg]$ $a_1 = 1$

式(5)から求めたばね定数

 $k = \lceil$ [N/m]

200[g]のときと1[kg]のときの伸びの差 $\Delta x = [$

式(7)から求めたばね定数

[N/m] $k = \lceil$

★ばね2本のとき

M 100-100 D 1/1-22 C C					
おもりの質量[kg]	0.20	0.40	0.60	0.80	1.00
2 0 T[s]					
周期T[s]					
T^2 s ²					

グラフから求めた傾き

 $\lceil [s^2/kg] \rceil$ $a_1 = 1$

式(5)から求めたばね定数

 $k = \lceil$ [N/m]

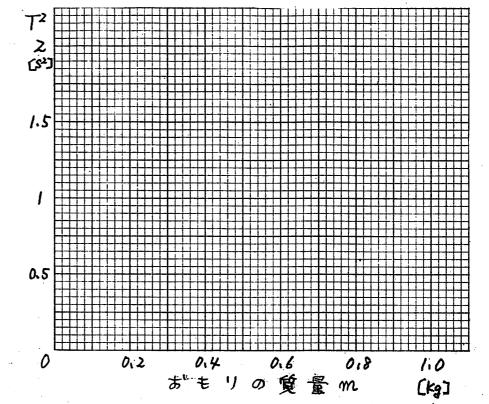
200[g]のときと1[kg]のときの伸びの差 Δx = [

式(7)から求めたばね定数 k =

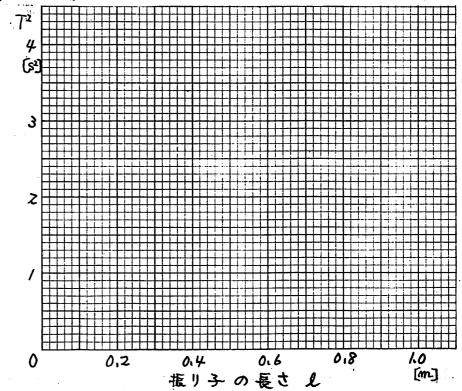
《単振り子》 ★鉄球のおもりだけのとき

V 30/10/10/ 02 0 2/10/17	<u> </u>				
振り子の長さ[n]	0.20	0.40	0.60	0.80	1.00
2 0 T [s]					
周期 T [s]					
$T^2[s^2]$			·		

★おもりの質量を約2倍にしたとき


振り子の長さ「加」	0.20	0.40	0.60	0.80	1.00
20T[s]	,		-		-
周期T[s]					
$T^2[s^2]$					

グラフから求めた傾き


 $[s^2/m]$ $a_2 =$

式(6)から求めた重力加速度 g = $[m/s^2]$

《ばね振り子》

《単振リチ》

