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この現象は定常状態に関する解析はほぼ確立されているが、形状が変わっていく非定常

状態の解析は不十分であり、特に先端が床に衝突後の振舞に触れた例はほとんど無い。こ

こではすべての過程を解析することで本現象の全体像を把握できるようになった。 

振り返って、鎖の立ち上がりを調べると、基礎パーツの剛体に働く「異常抗力」が有限

値からゼロに近づく「無限小の上昇解」と、そもそもゼロの「自由落下解」はつながって

いない。この「解の非連続性」は流体力学では粘性の効果などでよく見ることができる

が、鎖系では稀な例であることを強調したい。 

 

◯力学演習書[1]などで知られているように、鎖の自由落下では加速度は重力加速度ｇの

３分の１である。これは落下の際、非弾性的に加わる質量が落下を妨げるからである。 

 

◯鎖が上昇するのは、連続体となった鎖から非弾性的に鎖の基本パーツが引き上げられる

際に、パーツが剛体であって、他端が床（他のパーツ）から抗力を受けるためである

[2]。異常抗力と呼ばれている。その分だけ、既につながって連続体となった鎖からうけ

る張力（𝜌𝑢2で記述される、ここで、𝜌は線密度、𝑢は速さ）に対抗する下向き力が小さく

なる。その差分だけ上向きの加速度となるわけである。 

 それを記述するには、頂点に対して上昇側と下降側の２つの非線形連立方程式となる。 

図１のように、床（下端の太い横線）に置いた台の上面（コの字の上横線）から登って

いく鎖の運動方程式を作ってみる。頂点から落下する部分の運動方程式はそれぞれ、次の

ように表される。そこでも用いたように、鎖の全

長を 𝑙 、台から測った頂点の高さをℎ、台から下

の部分の長さを𝑥とすると 𝑙 = 𝑥 + 2ℎ の関係が

ある。さらに、台から上向きの鎖の速さ 𝑢 =

𝑑𝑙

𝑑𝑡
 、頂点の上昇速度 𝑈 =

𝑑ℎ

𝑑𝑡
、𝑥の速さ 𝑣 =

𝑑𝑥

𝑑𝑡
  

を定義すると、鎖がたるみなく繋がって運動して

いる条件から  𝑢 − 𝑈 = 𝑣 + 𝑈  つまり 

 𝑢 = 𝑣 + 2𝑈            (1) 

が得られることに注意する。 

ここで重要なのは、台が鎖に及ぼす「異常抗

力」𝑁を表すパラメータ𝛼で 𝑁 = 𝛼𝜌𝑢2 と表した

[3]。これは鎖の基礎パーツが剛体であり完全非

弾性的に連結することが本質である。実際、αは

    

    



剛体の形によって 0から 0.5の間の値をとる。 

 ここで、机から頂点まで(即ち図１の左側の鎖)の運動方程式として 

 ℎ
𝑑𝑢

𝑑𝑡
= −3𝑈𝑢 + 𝑈2 + 𝛼𝑢2 − ℎ𝑔                          (2) 

 

頂点から床まで（即ち図１の右側の鎖）の式 

 (𝑈 + 𝑣)2  + (ℎ + 𝑥)
𝑑𝑣

𝑑𝑡
= (ℎ + 𝑥)𝑔                (3)      

が得られる。 

これは、非線形連立方程式であって容易には解けない。そこで、等加速度運動の解を想

定して議論する。 

改めて、次の解を仮定する。𝑥 = 1

2
𝑎𝑡2、ℎ = 1

2
𝐴𝑡2、𝑣 = 𝑎𝑡、𝑈 = 𝐴𝑡、

𝑑𝑣

𝑑𝑡
= 𝑎。 

(3) に代入すると、 

(𝐴 + 𝑎)2𝑡2  + 1

2
(𝐴 + 𝑎)𝑡2𝑎 = 1

2
(𝐴 + 𝑎)𝑡2𝑔、 

 2(𝐴 + 𝑎)  + 𝑎 = 𝑔、 3𝑎 = 𝑔 − 2𝐴、 𝑎 = (𝑔 − 2𝐴)/3 

なので、これを(1)に代入して以下を得る； 

 

                                     𝑢 = 𝑣 + 2𝑈 = (𝑎 + 2𝐴)𝑡 = (𝑔 + 4𝐴)𝑡/3         (4) 

 

さらに、これらを式 (2)に代入して 𝑡2 で割り、係数を整理すると、頂点の上昇加速度 𝐴 

に対する 2次方程式とその判別式が得られる。運動方程式(2)と式(3)を連立させて、等加

速度運動を求めたわけである。 

 

(66 − 32𝛼)𝐴2 + (30 − 16𝛼)𝐴𝑔 − 2𝛼𝑔2 = 0    (5) 

𝐷′ = (15 − 8𝛼)2 + 2𝛼(66 − 32𝛼) = 225 − 108𝛼 

 

これは次のように厳密解を表記できる。 

 

𝐴

𝑔
=

−(15−8𝛼)±√225−108𝛼

66−32𝛼
                      (6) 

 

抗力が働かないとき、すなわち α = 0 のとき、負でない解は 𝐴 = 0 のみとなって、

鎖の頂点の上昇はなく、解は自由落下の場合に一致する。 

 

求めた式（6）で、α が有限の時、
𝐴

𝑔
 の正の根を α の関数としてグラフにする。 

 



 

 

これを見ると、現実的な値（α=0.3～0.4）では、自由落下 g/3の十分の一程度である

ことは興味深い。 

 

◯先端が床に着いた後の定常状態 

実験によると、鎖の先端が床に着いてしまうと、まもなく頂点の上昇が止まり、鎖は

その（上に凸の）形を保ったまま落下を続ける。(2)および  (3) の運動方程式をもとに、

鎖の先端が床に着いたあとの定常状態を議論することができる。ここでは、床からの抗力

は完全非弾性的で鎖の運動に影響を与えないとする。 

床から台までの高さを ℎ1、台から頂点までの高さを ℎ2 とする。 

定常状態では 𝑥 = ℎ1、ℎ = ℎ2、かつ 
𝑑𝑣

𝑑𝑡
= 0、𝑈 = 0 である。鎖の速さは 𝑣 = 𝑢 となっ

て、この値を 𝑣∞ とおいて (2)および  (3) に代入すると、運動方程式は結局、 

0 = 𝛼𝑣∞
2 − ℎ2𝑔   (7a)、   𝑣∞

2  = (ℎ1 + ℎ2)𝑔   (7b) 

となる。これらより、ℎ1 に対する ℎ2 の比は異常抗力のパラメータ 𝛼 によって、𝛼 =

ℎ2/(ℎ1 + ℎ2)、 ℎ2/ℎ1 = 𝛼/(1 − 𝛼) と与えられる。これは、既に[3]で報告されている定常

状態の関係式と一致している。 

 

◯ここでは全過程の解析なので、等加速度運動とみなせる運動が終了した後、どのように

定常状態に移行するかを調べる。 

運動方程式は以下になる 

落下する側は(3) において 𝑥 = ℎ1 と置き換えて、 

(ℎ + ℎ1)
𝑑𝑣

𝑑𝑡
= (ℎ + ℎ1)𝑔 − (𝑈 + 𝑣)2             (8)  

と表されるが、ℎ、𝑈 が時間の関数なので、容易に解けない。 

上昇する鎖の側の運動方程式は、前と変わらず(2)のままである。 

この 2つの式(2),(8)を、(1)の条件 𝑢 = 𝑣 + 2𝑈 のもとで連立させて解を求める必要が

ある。しかし一般解を求めるのは容易ではない。 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 0.1 0.2 0.3 0.4 0.5

A/g

α 異常抗力パラメータ  

  
 



そこで、定常状態への緩和過程なので緩和時間τの指数関数の解を探索する。即ち 

ℎ = ℎ2 − ℎ′𝑒−
𝑡

𝜏、 𝑣 = 𝑣∞ − 𝑣′𝑒−
𝑡

𝜏、 𝑈 =
𝑑ℎ

𝑑𝑡
=

ℎ′

𝜏
𝑒−

𝑡

𝜏、 
𝑑𝑣

𝑑𝑡
=

𝑣′

𝜏
𝑒−

𝑡

𝜏 (9) 

時間の原点は、鎖の先端が床に着いた時に取り直した。この段階では、ℎ′, 𝑣′ は未知数

であるが、式が二つあることからコンシステント条件から消すことを考える。 

これらを運動方程式に代入して、𝑒−
𝑡

𝜏 のべきで整理し、両辺の係数の比較からパラメー

ターの満たすべき関係を求める。まず式 (8) に代入すると次式となる。 

 

(ℎ1 + ℎ2 − ℎ′𝑒−
𝑡

𝜏)
𝑣′

𝜏
𝑒−

𝑡

𝜏 = (ℎ1 + ℎ2 − ℎ′𝑒−
𝑡

𝜏) 𝑔 − (𝑣∞ − 𝑣′𝑒
−

𝑡
𝜏 +

ℎ′

𝜏
𝑒−

𝑡

𝜏)

2

       (10)  

 

０次の項を比較して、0 = (ℎ1 + ℎ2)𝑔 − 𝑣∞
2 を得る。これは当然、定常状態の式(7b)そ

のものである。さらに、1次の項から、 

(ℎ1 + ℎ2)
𝑣′

𝜏
= −ℎ′𝑔 + 2𝑣∞ (𝑣′ −

ℎ′

𝜏
)             (11)  

を得る。右辺では𝑈と𝑈2 の寄与が本質である。また、左辺は(7b)より 
𝑣∞

2 𝑣′

𝑔𝜏
 になる。 

一方、上昇する側の鎖の運動方程式(2)に先の解(9)を代入すると、次の式になる。 

(ℎ2 − ℎ′𝑒−
𝑡

𝜏) (𝑣′ −
2ℎ′

𝜏
)

1

𝜏
𝑒−

𝑡

𝜏 = −3
ℎ′

𝜏
𝑒−

𝑡

𝜏 (𝑣∞ − (𝑣′ −
2ℎ′

𝜏
) 𝑒−

𝑡

𝜏) 

+ (
ℎ′

𝜏
𝑒−

𝑡

𝜏)
2

+ 𝛼 (𝑣∞ − (𝑣′ −
2ℎ′

𝜏
) 𝑒−

𝑡

𝜏)
2

− (ℎ2 − ℎ′𝑒−
𝑡

𝜏) 𝑔       (12)     

右辺では𝑈と 
𝑑𝑣

𝑑𝑡
 の寄与が重要である。ここで、𝑒−

𝑡

𝜏 の 0次の項を比較すると、当然(7a)式 

0 = 𝛼𝑣∞
2 − ℎ2𝑔   になっている。次に両辺の 1 次の項を比較すると、 

(𝑣′ −
2ℎ′

𝜏
)

ℎ2

𝜏
= −3

ℎ′

𝜏
𝑣∞ − 2𝛼𝑣∞ (𝑣′ −

2ℎ′

𝜏
) + ℎ′𝑔         (13)  

になった。ここで、左辺の 
ℎ2

𝜏
 は(7a)より 

𝛼𝑣∞
2

𝜏𝑔
 になる。 

 

◯漸近的振舞いの数値解 

ここで、(11)と(13)  へ(7b),(7a)を適用した式を連立させる。具体的には、それぞれ

の式で緩和の減速度 
𝑣∞

𝜏
 を gで割った無次元の変数 𝑧 =

𝑣∞

𝜏𝑔
 で、未知数の比 

ℎ′

𝑣′ を無次元化

した 
ℎ′

𝜏𝑣′ を求めると次式になる。 

ℎ′

𝜏𝑣′ =
𝑧2−2𝑧

−1−2𝑧
 = 

𝛼(𝑧2+2𝑧)

2𝛼(𝑧2+2𝑧)+1−3𝑧
       (14) 



このようにして、無次元量 
ℎ′

𝜏𝑣′ を消去することで、変数 zに関する方程式が得られる。そ

れは変数 z=0 の解の他に、次のような係数にαを含むｚに関する３次方程式が得られる。 

2𝛼ｚ
3

+ (2𝛼 − 3)𝒛2 + (7 − 3𝛼)𝒛 + (2𝛼 − 2) =  0                       (15)       

 

この式の左辺を zの３次関数としてグラフに表した。パラメータαは 0 < 𝛼 < 1/2 の

範囲である。 

 

 

この３次方程式(3-6)の根の様子は 𝛼 の値によって変化する。 

判別式を確認してみると、𝛼 < 0.147 で 3実根、𝛼 = 0.147 で重根、𝛼 > 0.147 で１実

根と二つの共役複素根を持つことがわかった。 

𝛼 = 0 では方程式は 2次方程式になり、根は 𝑣∞ 𝜏𝑔⁄ = 1/3、2 のふたつになる。 

𝛼 < 0.147 で３実根のうちひとつは 𝑣∞ 𝜏𝑔⁄ < 1/3 、あとの２根はともに 𝑣∞ 𝜏𝑔⁄ > 2。 

𝛼 = 0.147 では根のひとつは 𝑣∞ 𝜏𝑔⁄ = 0.29、重根は 𝑣∞ 𝜏𝑔⁄ = 4.4 である。 

𝛼 > 0.147 で１実根は 𝑣∞ 𝜏𝑔⁄ < 1/3  の範囲にある。 

 

◯ここで、𝛼 = 0 の場合について詳しく検討する。αがはじめから厳密にゼロの場合、鎖

に頂点が生じて上昇することはなく、第１章で議論した自由落下において鎖の先端が床に

着いてからの場合に対応する。先の結果によれば、定常状態における速度は √ℎ1𝑔 で、

定常状態に漸近する時定数は、𝜏 = √ℎ1 𝑔⁄ /2 であった。すなわち、𝑣∞ = √ℎ1𝑔 で、

𝑣∞ 𝜏𝑔⁄ = 2 であり、τの小さな「はやい緩和解」である。 

◯ここで、𝑣∞ 𝜏𝑔⁄ = 1/3 のτの大きな「ゆっくりした緩和解」はどこに含まれているの

か？という疑問が生まれる。実際、0次の項を比較すると、(ℎ1 + ℎ2)𝑔 = 𝑣∞
2、ℎ2𝑔 =

𝛼𝑣∞
2 (7a,7b)を得た。𝛼 = 0 とすれば ℎ2 = 0、ℎ1𝑔 = 𝑣∞

2となる。これらより (11) で残

る項は 
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𝑣∞
2𝑣′

𝜏𝑔
= −ℎ′𝑔 + 2𝑣∞ (𝑣′ −

ℎ′

𝜏
)            (16)  

となり、(13)で残る項は、 

          0 = −3
ℎ′

𝜏
𝑣∞ + ℎ′𝑔 = (− 3𝑣∞ 𝜏 + 𝑔⁄ )ℎ′          (17) . 

になる。従って、ℎ′ = 0 または 𝑣∞ 𝜏𝑔⁄ = 1 3⁄  を得る。 

                                                                                                                                                                                

はじめから厳密に 𝛼 = 0 であれば ℎ2 = 0 で、ℎ′ = 0 しか取りようがない。𝛼 が微小

でも有限であれば ℎ′ ≠ 0 となり得て、𝛼 → 0 という極限で 𝑣∞ 𝜏𝑔⁄ → 1 3⁄  となる解が実

現するわけである。実際、𝑣∞ 𝜏𝑔⁄  の３次方程式(15)の振舞いを見ると、𝛼 が微小でも有

限であれば 𝑣∞ 𝜏𝑔⁄ = 2 の近傍の実根は 𝑣∞ 𝜏𝑔⁄ > 2 となり、物理的に可能な解を与えな

くなってしまう。つまり 𝑣∞ 𝜏𝑔⁄ = 2 となる解は、𝛼 = 0 （完全にゼロ）の時に限って許

された特殊な解ということになる。 

興味深いことは、このときの２種類の解について、定常状態の速さが 𝑣∞ = √ℎ1𝑔 で等

しいにも関わらず、この同じ速さに漸近する時定数𝜏が 6倍も異なることである。わずか

でも上向の初速度を持って始まった「ゆっくりした緩和解」の運動と、それがなかった時

の「はやい緩和解」の運動が、解析的に接続しないことの反映である。 

現象を支配する有限なパラメータが無限小の極限と、もともとゼロの場合とが異な

る、ということは流体力学問題にはしばしばある。典型的な例が粘性の問題である[4]。 

流体が壁に沿って流れると、粘性によって境界層が生じ、渦度が必然的に生成され、この

効果は粘性係数をゼロに近づける極限でも消えないが、最初から粘性をゼロと仮定した場

合には現れない。ここではそのような特異性が鎖系で出現していることを強調したい。 
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